
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Comparison of FPGA Based Cordic Architectures
Jinu Elizabeth John,Asst.Prof.,Dept. of ECE, Saintgits College of Engineering

Abstract— The COordinate Rotational DIgital Computer (CORDIC) algorithm is an iterative method for performing basic

arithmetic operations including certain linear, trigonometric, hyperbolic and logarithmic functions. [1]–[3]. The algorithm only uses

elementary shift-and-add steps to performing two-dimensional (2-D) plane vector rotations facilitating easy hardware implementation.

This is mainly used in signal processing architecture. This paper presents a comparison of the various CORDIC architectures,

especially in three different major styles iterative, parallel and pipelined structures with respect to their speed, area, and data

throughput performance All three designs were coded in VHDL, simulated using Modelsim 6.2 c and Implemented in Xilinx Sparten 3E

and NET FPGA and Synopsis ASIC synthesis tools.

Index Terms—CORDIC ,Vector Rotation ,sine, hyperbolic

——————————  ——————————

1 INTRODUCTION

N 1959 , Jack E. Volder was first to describe the modern
CORDIC algorithm at the aero electronics department of
Convair so as to replace the analog resolver in the B-58

bomber's navigation computer. Even though CORDIC is
similar to mathematical techniques published by Henry
Briggs in 1624, it is optimized for low complexity finite state
CPUs.The further generalization of the algorithm including
the multiplications, divisions, and square roots, hyperbolic,
exponential functions and logarithmic calculations was done
by John Stephen Walther at Hewlett-Packard. The binary
numeral system was first used to implement the CORDIC al-
gorithm .CORDIC can be used in any architecture where
speed of operation is not very important compared to cost. It
is well-suited for handheld calculators where the chip gate
count has to be minimized..

 CORDIC seems to be faster than other approaches when a
hardware multiplier like a micro controller is not available or
when the number of gates required to implement the func-
tions it supports should be minimized (e.g., in an FPGA).

On the other hand, when a hardware multiplier is available

(e.g., in a DSP microprocessor), table-lookup methods and
power series are generally faster than CORDIC. Nowadays,
the CORDIC algorithm is used extensively for various FPGA
implementations in biomedical field. The software implemen-
tations include integer-only CPUs . The most modern general-
purpose CPUs have floating-point registers with common op-
erations such as sin, cosine, square root, log10, natural log,
addition, subtraction, multiplication and division .Adaptive
signal processing algorithms, require the computation of Eig-
en values, the solution of systems of linear equations and
conversions between polar and rectangular co-ordinates [3].
All these tasks can be efficiently implemented using pro-
cessing elements performing vector rotations. The
CORDIC has the capability to calculate all the desired func-
tions in a rather simple way using addition, subtraction, bit
shift operations and lookup tables, without using any
hardware multiplier . Due to the simplicity of the involved
operations the CORDIC algorithm is very well suited for
VLSI implementation. The scaling of rotated vector is done

for making necessary scale factor corrections.

2 Cordic Algorithm

The CORDIC algorithm exists in two different modes
vector translation mode and vector rotation mode.

In vector translation mode the coordinates (x0, y0) are ro-
tated until y0 converges to zero. This paper discuss about the
vector rotation mode of CORDIC. Initial vector (x0, y0) starts
aligned with the x axis and is rotated by a specific angle dur-
ing every cycle, so that after n iterations, we get the desired
angle. The main idea consists in taking a unit vector and
applying successive rotations, called micro-rotations, until the
desired angle is reached. The rotating vector is chosen to be
unit vector, since after n iterations it will contain sinn and
cosn in its second and first components respectively

Fig 1: Illustration of Vector Rotation

Consider the iterative rotation of a vector (x(i),y(i)) ,by an
angle i to obtain an (x(i+1), y(i+1)) [1],

This can be rewritten as

I

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Where tan i can be restricted to di 2-i , so the multiplica-
tion can be converted into an arithmetic right shift [5] , with
di =± 1. The first factor

For rotation over an arbitrary angle , -/2 ≤  ≤ /2 , it can

be decomposed as :

 The cosine term could also be simplified and since cos(α)
is a constant for a fixed number of iterations. This iterative
rotation can now be expressed as:

where, i denotes the number of rotation required to reach the
required angle of the required vector, ki=cos(arctan(2-i)) and

.The product of the ki 's represents the scale factor [6] K :

On each iteration it is necessary to decide whether

In order to make that decision, the difference between the
desired angle and the current angle is used. So a new variable
known as accumulator is defined as :

where I(i) is the LUT entries.
The sum of the rotating angles gives the desired an-
gle

3 PROPOSED ARCHITECTURE

This section deals with different hardware used for
computation of sine and cosine using CORDIC [7]. Here iter-
ative rotations of a point around the origin on the x-y plane
are considered. In each rotation, the coordinates of the rotated
point and the remaining angle to be rotated are calculated.
Since each rotation is a rotation extension the number of
rotations for each angle should be a constant independent of
operands .So the gain factor K becomes a constant. Hardware
implementation for CORDIC arithmetic requires three
registers for x, y and z, two shifter to supply the terms 2-i x
and 2-i y to the adder/subs tractor units and a look up table
to store the values of i=tan -12-i . The di factor (-1 and 1)
selects the shift operand or its complement. The initial inputs
to the architectures are X0=1, Y0=0. The structure re-
quires a preprocessing unit to converge the input angles to
the desired range and a post processing unit to fix the sign of
outputs depending on the initial angle quadrants.
The pre-processing unit takes in angles of any range and con-
verges it to the interval [-π/2, π/2]. It keeps record of the
quadrant of the input angle which may be used in the post-
processing unit to fix the sign of outputs. These two blocks are
inevitable for any application as the input range cannot be
predicted always.

Fig 2: CORDIC Block Diagram

3.1 Sequential/Iterative Architecture

The CORDIC algorithm requires approximately one shift-
add/sub operation for each bit of accuracy. A CORDIC core
implemented with sequential architectural configuration,
implements these shift-add/sub operations serially, using a
single shift-add/sub stage and feeding back the output. An
iterative CORDIC core with N bit width has a minimum
latency of N cycles. It takes at least N cycles to produce new
output. The implementation size is directly proportional to the
internal precision. This architecture finds major application in
pocket calculators, since even a delay of thousands of clock
cycles constitute a small fraction of a second for a human user.
To obtain sine and cosine values of a given angle z0, itera-
tive structure takes the value of (x0,y0) as (1,0) in the first clock
cycle. From the next clock cycle onwards it takes the feedback
values and the operation continues till the required output is
obtained. The control signal for the input registers is provided
by a state-machine designed for the purpose. To get an N bit
precise output, the structure requires iterating at least N times
[4]. Hence, it requires a minimum of N clock cycles for required
output.

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Fig 3: Sequential CORDIC

3.2 Cascaded CORDIC Architecture

This architecture uses multiple instances of Iterative CORDIC
structure. A CORDIC core with parallel architectural
configuration implements the shift-add/sub operations in
parallel using an array of shift-add/sub stages [8]. A parallel
CORDIC core with N bit output has a latency of one clock cy-
cle.

The implementation size of a parallel CORDIC core is di-
rectly proportional to the internal precision times the number
of iterations. Instantiation of blocks must be done N times for
an N bit precise output. Unlike in iterative CORDIC, all
iterations are done in parallel and hence need not wait for N
clock cycles. But, the latency of each block has an inevitable
role in fixing the clock frequency. The frequency of operation
for Parallel CORDIC core will be lesser than the frequency of
operation of iterative CORDIC. But this is the case with a sin-
gle iteration. While dealing with a chain of inputs, the par-
allel structure proves to be more efficient one since the
throughput of parallel structure is much greater than that of
iterative. The shifters used in this structure are constant
shifters, which can be implemented in the wiring, so that the
hardware can be reduced.

Fig 4: Cascaded CORDIC

.

3.3 Pipelined CORDIC Architecture

Pipelined architecture uses a structure similar to that of a Par-
allel CORDIC. It uses pipeline registers in between each itera-
tion phase as shown in Fig. 5.
Pipelined CORDIC proves to be advantageous with
continuous input values. For an N bit data CORDIC core, N
stage pipeline can give maximum result. The first output of an
N-stage pipelined CORDIC core is obtained after N clock
cycles. Thereafter, outputs will be generated during every
clock cycle. The advantage of pipelined CORDIC core over
parallel and iterative CORDIC cores is its frequency of
operation which is much higher when compared to the latter
two structures. Pipeline realizes same throughput as that of
parallel core with improved frequency of operation. This
feature of pipelined structure makes it the best possible option
for high frequency satellite communication and other
communication systems. A drawback of pipelined structure is
the increase in area introduced by the registers. Hence, there is
a trade-off between parallel and pipelined cores based on
frequency and area.

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Fig 5: Pipelined CORDIC

4 IMPLEMENTATIONS AND RESULTS

CORDIC design implementation was first done in Matlab.
Iterative, parallel and pipelined CORDIC were implemented
in VHDL as well.
Matlab does not take into account any structural differences.
The implementation consists of modeling the basic CORDIC
equations. Input angles were given in degrees. The scaling
factor K was fixed to 0.6073 [5].
In order to generate the sine and cosine values, it was in-
evitable to design a preprocessing as well as post-processing
modules. The preprocessing module restricts the angles
beyond π/2 and - π/2 to the [-π/2, π/2] range. Similarly, the
post-processing module fixes the sign of generated sine and
cosine values based on the quadrant of the initial input angle.
Sine and cosine waves were generated in Matlab and
compared with the waves generated by inbuilt functions.
Waveforms generated by the designed CORDIC function are
shown below.

VHDL coding for iterative, parallel and pipelined CORDIC
cores were done and simulated in Modelsim. Synthesis was
done in Xilinx and results were obtained as given in the tables
below.
Selected Device: Xilinx Spartan 3

Fig 5: MATLAB Waveforms

Table 1. Device Utilization Summary

Parameter
 Iterative
CORDIC

Parallel
CORDIC

Pipelined
CORDIC

No. of Slices

No.of Slice FlipFlops

No. of 4 input LUTs

No. of IOs
No. of bonded IOBs
No. of GCLKs

128

59

241

52

52

2

13%

3%

12%

78%

8%

373

50

721

49

49

1

38%

2%

37%

74%

4%

373

723

721

49

49

1

38%

37%

37%

74%

4%

From the table given above, iterative, parallel and pipelined
CORDIC has a commendable difference in terms of the blocks
synthesized. As evident from the block diagram shown above,
parallel CORDIC has multiple instantiation of hardware
blocks which has been instantiated only once in iterative
structure. Hence, the number of slices and 4 input LUTs are
more for parallel CORDIC whereas number of slice flip-flops
and number of IO blocks are more for iterative structure. The
pipelined structure uses N instantiation of three register sets
which results in an increase in the number of slice flip-flops.
Another major observation is on the frequency of operation
compared to parallel and pipelined has the highest frequency.
The data output time corresponding to the frequency of
iterative core is the time required to get output after single
iteration. In order to get the required output at least 16 similar
iterations are needed, which will take ~154.752 nS. The data
output time shown for parallel and pipelined structures is the
time required to get the final output as the instantiations are
done simultaneously. Time taken for parallel is almost less
than half of the iterative structure and that of pipelined is less
than almost thirteen times that of parallel. Hence, pipelined
structure can be used for high speed applications like in
satellite communication.

Further analysis was done in Design Vision. All three of the
circuits were analyzed for area, timing and power parameters.
The work done is based on 13 micron technology.

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Table 2. Total Area Analysis

 Parameter

Iterative
CORDIC

Parallel
CORDIC

Pipelined
CORDIC

Number of ports
Number of net

 Number of cells

Number of references

Combinational area

Non-combinational

area

52
255

103

26

1146

660

49
1587

158

111

14925

336

49
2323

174

159

15148

5488

Total area (nm2) 1806 15261 20636

Parallel CORDIC structure is a simple yet bigger structure
than iterative CORDIC structure. Due to multiple instantia-
tions of consisting blocks, parallel has a higher area (almost
eight times) than the iterative structure. Pipelined structure
has an added area of the registers apart from that of parallel.
From the table above, iterative structure provides the best de-
sign in terms of area.

Table 3. Iterative CORDIC _Timing Analysis

 Point Incr Path

load_reg/CP

(FDS2L)

load_reg/Q

(FDS2L)

done_out (out)
data arrival time

0.00

23.46

0.00

0.00r

23.46 r

23.46 r

23.46

Table 4. Parallel CORDIC _Timing Analysis

Point Incr Path

load_reg/CP

(FDS2L)

load_reg/Q

(FDS2L)

done_out (out)
data arrival time

0.00

23.46

0.00

0.00r

23.46 r
23.46 r

23.46

Table 5. Pipelined CORDIC _Timing Analysis

 Point Incr Path

reg_y_15/outp_reg[15]/CP

(FD1)

reg_y_15/outp_reg[15]/Q

(FD1) reg_y_15/outp[15]

(pipe_reg_1) sin_z[15] (out)

data arrival time

0.00

1.41

0.00

0.00

0.00r

1.41 f
1.41f

1.41 f

1.41

From the tables it is evident that parallel and pipelined
CORDIC is much faster than the iterative CORDIC. Though it

consumes a higher area, Parallel and pipelined CORDIC
structures will be preferable for high speed applications.

Table 6. Synopsis_Power Analysis

Parameter

Iterative

CORDIC

Parallel

CORDIC

Pipelined

CORDIC

Cell Internal
Power

Net Switching

Power

0.00 nW

197.6024

uW

0.00 nW

2.1496 mW

0.00 nW

2.3158 mW

Total Dynamic

Power

197.6024 uW

2.1496 mW

2.3158 mW

The table above gives the comparison between the power
consumption of parallel, pipelined and iterative CORDIC.
While iterative consumes power in uW range, due to its higher
hardware complexity, parallel and pipelined consumes power
in mW range.

5 CONCLUSION

A tradeoff area/speed will determine the right structural ap-
plication. An iterative CORDIC uses lesser hardware than
parallel or pipelined CORDIC, but with the number of
iterations the shift distance changes, which requires a high fan
in and reduce the maximum speed of application. Area used
by Parallel and pipelined CORDIC is much higher compared
to that of Iterative CORDIC. This difference in hardware units
has caused an increased power usage by Parallel and pipe-
lined structures. The time advantage of parallel and pipelined
over iterative is that it gives the output in just one clock cycle
whereas iterative takes at least N clock cycles, where N is the
number of bits used. So these two structures can be used for
high speed applications, like satellite data processing system.
Current work implemented a completely programmable and
re-configurable cordic block which consist of iterative,
parallel and pipelined structures, with variable word size and
can be configured by the user based on the application

 REFERENCES

[1] J. Volder, "The CORDIC computing technique,"IRE Trans. Electronic Com-

puters, vol. EC-8, pp. 330-334, Sept. 1959.

[2] J. Walther, "A unified algorithm for elementary functions," Proc. AFIPS Spring

Joint Computing Conf., vol. 38, pp. 379-385, 1971.

[3] F. Angarita, A. Perez-Pascual, T. Sansaloni, and J. Vails, ―Ef cient FPGA Im-

plementation of CORDIC Algorithm for Circular and Linear Coordinates,‖

International Conference on Field Programmable Logic and Applications, pp.

535–538, Aug 2005.

[4] Uwe Meyer-Baese. ―Digital Signal Processing with Field Programmable Gate

Arrays‖. Springer-Verlag, New York, Inc., Secaucus, NJ, USA, pp. 70-75, 200.

[5] Milos D.Ercegovac, Tomas Lang ―Digital Arithmetic‖, pp 631-664, Mor-

gan Kaufmann Publishers,San Francisco,USA

[6] M.Garrido and J.Grajal,‖Memoryless CORDIC for FFT computation‖

ICASSP 2007.

[7] Ray Andraka. ―A survey of CORDIC algorithms for FPGA based comput-

ers‖. Proceedings of the 1998 ACM/SIGDA sixth international symposium

on Field programmable gate arrays , pp 192-200, New York, NY, USA, 1998.

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

ACM Press.

[8] Esteban O. Garcia, Rene Cumplido, Miguel Arias, ―Pipelined CORDIC De-

sign on FPGA for a Digital Sine and Cosine Waves

[9] Wu, An-Yeu Andy ,‖ A unified view for vector rotational CORDIC algo-

rithms and architectures based on angle quantization approach‖,2002

[10] Wu, Cheng-Shing,‖ A high-performance/low-latency vector rotational

CORDIC architecture based on extended elementary angle set and trellis-

based searching schemes‖2003

[11] Antelo,Elisardo Fac. de Fisica, Santiago de Compostela Univ., Spain ―High

performance rotation architectures based on the radix-4 CORDIC algorithm‖

[12] Pongyupinpanich, S. ; Samman, Faizal Arya ;Glesner,

Mandfred ; Singhaniyom, S. ―Design and evaluation of a floating-point divi-

sion operator based on CORDIC algorithm‖,2012

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wu,%20An-Yeu%20Andy.QT.&searchWithin=p_Author_Ids:37271932500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wu,%20Cheng-Shing.QT.&searchWithin=p_Author_Ids:37334383700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Antelo,%20Elisardo.QT.&searchWithin=p_Author_Ids:37324550600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pongyupinpanich,%20S..QT.&searchWithin=p_Author_Ids:37427707900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Samman,%20Faizal%20Arya.QT.&searchWithin=p_Author_Ids:37704829500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Glesner,%20Mandfred.QT.&searchWithin=p_Author_Ids:37277320300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Glesner,%20Mandfred.QT.&searchWithin=p_Author_Ids:37277320300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Singhaniyom,%20S..QT.&searchWithin=p_Author_Ids:37973138100&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6254331&contentType=Conference+Publications&queryText%3DCORDIC+Algorithm
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6254331&contentType=Conference+Publications&queryText%3DCORDIC+Algorithm

